Evaluation of the antibiofilm activity of essential oils Cinnamomum cassia and Eugenia caryophyllus microencapsulated by spray drying

Autores

DOI:

https://doi.org/10.21527/2176-7114.2026.51.16868

Palavras-chave:

Biofilme, Micropartículas, spray-drying, Óleos essenciais, anti-biofilme

Resumo

Biofilm-forming microorganisms are considered a challenge in terms of eradication in the areas of food, cosmetics, and health, as they are resistant to antibiotics and sanitizers available on the market. From this problematization, the essential oils (EOs) Cinnamomum cassia (CCEO) and Eugenia caryophyllus (ECEO) encapsulated in microparticles by the spray drying technique was used to obtain a stable dry emulsion and evaluate their antimicrobial action against biofilms of the microorganisms Staphylococcus aureus, Escherichia coli, and Candida albicans. The EOs were commercially obtained from different brands, being evaluated by the agar diffusion technique for preliminary evaluation of the antimicrobial action against the challenged microorganisms.  Microencapsulation was performed in spray drying, employing gum arabic and xanthan gum to obtain a dry emulsion with varying concentrations of the EOs. The microparticles were characterized for morphology, physicochemical parameters, and encapsulation efficiency (EE), and were also evaluated for anti-biofilm action. The results obtained showed relevant antimicrobial activity of the essential oils in non-encapsulated form and antibiofilm activity when they were microencapsulated, obtaining a significant logarithmic reduction concerning the initial load challenged, reducing between 3 to 4 logarithmic cycles. It was concluded that microparticles with encapsulated EOs showed promise in improving the stability of essential oils, with significant results when challenged against planktonic and sessile cells. 

Referências

1 Kerekes E, Vidács A, Jenei JT, Gömöri C, Takó M, Chandrasekaran M, et al. Essential oils against bacterial biofilm formation and quorum sensing of food-borne pathogens and spoilage microorganisms. In: Méndez-Vilas A (ed) The battle against microbial pathogens: basic science, technological advances and educational programs, 2015;429–437.

2 Garcia LGS, Rocha MG, Lima LR, Cunha AP, Oliveira JS, Andrade APC, Ricardo NMPS, Pereira-Neto W.A, Sidrim JCC, Rocha MFG, Vieira RS, Brilhante RSN. Essential oils encapsulated in chitosan microparticles against Candida albicans biofilms. Int. J. Biol. Macromol. 2021;166:621–632. https://doi.org/10.1016/j.ijbiomac.2020.10.220.

3 O’Toole G, Kaplan HB and Kolter R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 2000;54:49–79. https://doi.org/10.1146/annurev.micro.54.1.49.

4 Abrantes MR, Lima EO, Araújo M, Medeiros P, Menezes CP, Guerra FQS, Milan EP. Atividade antifúngica de óleos essenciais sobre leveduras Candida não albicans. Rev. Bras. Farm. 2013;94(3):227-233.

5 De Vita D, Friggeri L, D`Auria FD, Pandolfi F, Piccoli F, Panella S, Palamara AT, Simonetti G, Scipione L, Di Santo R, Costi R, Tortorella S. Activity of caffeic acid derivatives against Candida albicans biofilm. Bioorg. Med. Chem. Lett. 2014;24:1502-1505. https://doi.org/10.1016/j.bmcl.2014.02.005.

6 Pinheiro RR, Sabagh BP, Vidal LMR, Veras JFC, Vieira VV, Souto ASS, Pereira DCR, Neves MC, Villas-Boas MHS. Avaliação da contaminação microbiana em produtos desinfetantes de uso geral. Rev. Inst. Adolfo Lutz. 2013;72(2):170-4. https://doi.org/10.18241/0073-98552013721560

7 Oliveira, MMM, Brugnetra DF, Piccoli RH. Biofilmes microbianos na indústria de alimentos: uma revisão. Rev. Inst. Adolfo Lutz. 2010;69(3):277-84. https://doi.org/10.53393/rial.2010.v69.32626

8 Vergis J, Gokulakrishnan P, Agarwal RK, Kumar A. Essential Oils as Natural Food Antimicrobial Agents: A Review. Crit. Rev. Food Sci. Nutr. 2013;55(10):1320–1323. https://doi.org/10.1080/10408398.2012.692127.

9 Silva BD, Rosário DKA, Weitz DA, Conte-Júnior CA. Essential oil nanoemulsions: Properties, development, and application in meat and meat products. Trends Food Sci. Techn. 2022;121:1-13. https://doi.org/10.1016/j.tifs.2022.01.026

10 Mouhoub A, Guendouz A, Alaoui-Talibi ZEl, koraichi SI, Delattre C, Modafar CEl. Evaluation of different characteristics and bioactivities of chitosan-based films incorporating Eugenia caryophyllus and Cinnamomum zeylanicum essential oils. Mater. Chem. Phys. 2023;307:1-8. https://doi.org/10.1016/j.matchemphys.2023.128201

11Nascimento GGF, Locatelli J, Freitas PC, Silva GL. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz. J. Microbiol. 2000; 31:247-256. https://doi.org/10.1590/S1517-83822000000400003

12 Mau JL, Chen CP, Hsieh PC. Antimicrobial effects of extracts from Chinese chive, cinnamon and corni fructus. J. Agric. Food Chem. 2001;49(1):183-188. https://doi.org/10.1021/jf000263c

13 Farias KS, Alves FM, Santos-Zanuncio VS, Sousa Jr PT, Silva DB, Carollo CA. Global distribution of the chemical constituents and antibacterial activity of essential oils in Lauraceae family: A review. S. Afr. J. Bot. 2023;155:214-222. https://doi.org/10.1016/j.sajb.2023.02.028

14 Oliveira MMM, Brugnera DF, Nascimento JA, Piccoli RH. Control of planktonic and sessile bacterial cells by essential oils. Food Bioprod. Process. 2012;90:809-818. https://doi.org/10.1016/j.fbp.2012.03.002

15 Ooi LSM, Li Y, Sheung-Lau K, Wang H, Wong EYL, Ooi VE. Antimicrobial Activities of Cinnamon Oil and Cinnamaldehyde from the Chinese Medicinal Herb Cinnamomum cassia Blume. Am. J. Chin. Med. 2006;34(3): 511–522. https://doi.org/10.1142/S0192415X06004041

16 Van CK, Nguyen PTN, Nguyen TTT, Bach LG. Microencapsulation of Citrus latifolia peel essential oil by spray-drying using maltodextrin: Characterization, antimicrobial activities, and release profile. LWT- Food Sci. Technol. 2024;197: 1-12. https://doi.org/10.1016/j.lwt.2024.115825

17 Shafiei A, Safaei-Ghomi J, Masoomi R. Microencapsulation of Ducrosia anethifolia essential oil: Optimization characterization, and stability. Appl. Food Res. 2024;4:1-10. https://doi.org/10.1016/j.afres.2024.100598

18 Estevinho BMAN, Rocha FAN, Santos LMS, Alves MAC. Using water-soluble chitosan for flavour microencapsulation in food industry. J. Microencapsul. 2013;30(6): 571–579. https://doi.org/10.3109/02652048.2013.764939.

19 Castel V, Rubiolo AC, Carrara CR. Brea gum as wall material in the microencapsulation of corn oil by spray drying: Effect of inulin addition. Food Res. Int. 2018;103:76–83. https://doi.org/10.1016/j.foodres.2017.10.036

20 Outuki PM, Belloto de Francisco LM, Hoscheid J, Bonifácio KL, Barbosa DS, Cardoso MLC. Development of arabic and xanthan gum microparticles loaded with an extract of Eschweilera nana Miers leaves with antioxidant capacity. Colloids Surf. A: Physicochem. Eng. Asp. 2016;499:103–112. https://doi.org/10.1016/j.colsurfa.2016.04.006

21 Drusch S, Mannino S. Patent-based review on industrial approaches for the microencapsulation of oils rich in polyunsaturated fatty acids. Trends Food Sci. Technol. 2009;20:237-244. https://doi.org/10.1016/j.tifs.2009.03.007

22 Al-Hamayda A, Abu-Jdayil B, Ayyash M, Tannous J. Advances in microencapsulation techniques using Arabic gum: A comprehensive review. Ind. Crop. Prod. 2023;205:1-10. https://doi.org/10.1016/j.indcrop.2023.117556

23 Bajac J, Nikolovski B, Loncarevi´ I, Petrovi´ J, Bajac B, Đurovi´ S, Petrovi´ L. Microencapsulation of juniper berry essential oil (Juniperus communis L.) by spray drying: microcapsule characterization and release kinetics of the oil. Food Hydrocoll. 2022;125:1-10. https://doi.org/10.1016/j.foodhyd.2021.107430

24 Li H, Peng F, Lin JX, Xiong T, Huang T. Preparation of probiotic microcapsules using gelatin-xylooligosaccharides conjugates by spray drying: Physicochemical properties, survival, digestion resistance and colonization. Food Biosci. 2023;52:1-7. https://doi.org/10.1016/j.fbio.2023.102462

25 Ascheri DPR, Marquez MOM, Martucci ET. Microencapsulação de óleo essencial de laranja: Seleção de material de parede. Ciênc. Tecnol. Aliment. 2003;23(supl.):1-6. https://doi.org./10.1590/S0101-20612003000400002

26 Fernandes RVB, Carmo EL, Borges SV, Botrel DA, Silva YF, Souza HJB. Comportamento de óleo essencial de alecrim microencapsulado por spray drying em diferentes umidades relativas. Ciênc. Agríc. 2016;14(1):73-82. https://doi.org/10.28998/rca.v14i1.2469

27 Granata G, Stracquadanio S, Leonardi M, Napoli E, Consoli GMT, Cafiso V, Stefani S, Geraci C. Essential oils encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation. Food Chem. 2018;269:286-292. https://doi.org./10.1016/j.foodchem.2018.06.140.

28 Sansone F, Picerno P, Mencherini T, Villecco F, D’Ursi AM, Aquino RP, Lauro MR. Flavonoid microparticles by spray-drying: Influence of enhancers of the dissolution rate on properties and stability. J. Food Eng. 2011;103:188-196. https://doi.org/10.1016/j.jfoodeng.2010.10.015

29 Farmacopéia Brasileira. 6. ed. 2019. Agência Nacional de Vigilância Sanitária. Disponível em: http://portal.anvisa. gov.br/documents/33832/259143/Volume+I+Pronto.pd f/4ff0dfe8-8a1d-46b9-84f7-7fa9673e1ee1. Acesso em: 20 jan. 2024

30 Pinto TJA, Kaneko TM, Pinto AF. Controle Biológico de Qualidade de Produtos Farmacêuticos, Correlatos e Cosméticos. 4° ed. São Paulo: Atheneu Editora; 2015.

31 Romano I, Granata G, Polia A, Finorea I, Napolib E, Geracib C. Inhibition of bacterial growth on marble stone of 18th century by treatment of nanoencapsulated essential oils. Int. Biodeter. Biodegr. 2020;148:1-5. https://doi.org/10.1016/j.ibiod.2020.104909

32 Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008;3(2):163-175. https://doi.org/10.1038/nprot.2007.521.

33 Millezi AF, Piccoli RH, Oliveira JM, Pereira MO. Anti-biofim and Antibacterial Effect of Essential Oils and Their Major Compounds. J. Essent. Oil-Bear. Plants. 2016:19 (3):624-631.https://doi.org/10.1080/0972060X.2014.960262

34 R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2021. URL https://www.R-project.org/

35 Estevinho BN, Damas AM, Martins P, Rocha F. Microencapsulation of ß-galactosidase with different biopolymers by a spray-drying process. Food Res. Int. 2014;64:134-140. https://doi.org/10.1016/j.foodres.2014.05.057

36 Mladenovska K, Cruaud O, Richomme P, Belamie E, Raicki RS, Venier-Julienne MC, Popovski E, Benoit JP, Goracinova K. 5-ASA loaded chitosan-Ca-alginate microparticles: Preparation and physicochemical characterization. Int. J. Pharm. 2007; 345:59–69. https://doi.org/ 10.1016/j.ijpharm.2007.05.059

37 Lachman L, Lieberman HA, Kaning JL. Teoria e prática na indústria farmacêutica. 2.ed. Lisboa: Fundação Calouste Gulberkian; 2010.

38 Ribeiro AM, Shahgol M, Estevinho BN, Rocha F. Microencapsulation of Vitamin A by spray-drying, using binary and ternary blends of gum arabic, starch and maltodextrin. Food Hydrocoll. 2020;108:1-13. https://doi.org/10.1016/j.foodhyd.2020.106029

39 Marchese A, Barbieri R, Coppo E, Orhan IE, Daglia M, Nabavi SF, Ajami M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017;43(6):668–689. https://doi.org/ 10.1080/1040841X.2017.1295225.

40 Escobar-Garcia M, Rodríguez-Contreras K, Ruíz-Rodríguez S, Pierdant-Pérez M, Cerda-Cristerna B, Pozos-Guillén A. Eugenol Toxicity in Human Dental Pulp Fibroblasts of Primary Teeth. J. Clin. Pediatr. Dent. 2026;40(4):312-318.https://doi.org/ 10.17796/1053-4628-40.4.312.

41 Unlu M, Ergene E, Unlu GV, Zeytinoglu HS, Vural N. Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae). Food Chem. Toxicol. 2010;48(11):3274–3280. https://doi.org/ 10.1016/j.fct.2010.09.001.

42 Clemente I, Aznar M, Silva F, Nerín C. Antimicrobial properties and mode of action of mustard and cinnamon essential oils and their combination against foodborne bacteria. Innovative Food Sci. Emerg. Technol. 2016;36:26–33. https://doi.org/10.1016/j.ifset.2016.05.013

43 Vasconcelos NG, Croda J, Simionatto S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb. Pathog. 2018;120:198–203. https://doi.org/10.1016/j.micpath.2018.04.036

44 Liang D, Feng B, Li N, Su L, Wang Z, Kong F, Bi Y. Preparation, characterization, and biological activity of Cinnamomum cassia essential oil nano-emulsion. Ultrason. Sonochem. 2022;86:1-10. https://doi.org/10.1016/j.ultsonch.2022.106009

Downloads

Publicado

2026-01-02

Como Citar

Ribeiro, G. de A., da Silva, E. C., de Souza, S. R., Campos, N. da S., Andrade, J. M. de L., & da Silva, M. V. (2026). Evaluation of the antibiofilm activity of essential oils Cinnamomum cassia and Eugenia caryophyllus microencapsulated by spray drying. Revista Contexto & Saúde, 26(51), e16868. https://doi.org/10.21527/2176-7114.2026.51.16868

Edição

Seção

Artigo Original