Antidepressant exploration of moxidectin: Effects on behavior, neurotrophic factors and oxidative stress biomarkers in mice

Autores

DOI:

https://doi.org/10.21527/2176-7114.2026.51.16605

Palavras-chave:

depression, antiparasitic, BDNF, GABAA, behavioral testing

Resumo

Major depressive disorder is a reality to an increasing number of individuals worldwide, yet, it is still poorly understood and its treatment remains lackluster. Due to the subpar success rates of traditional monoaminergic pharmacotherapy, new targets have been explored. Here, the behavioral effects of a single dose of moxidectin (MOX) (1,5 mg/kg, 0,1 mL/10g, s.c.), a drug capable of allosterically modulating GABAA channels, was evaluated in male Swiss mice by the tail suspension (TST), splash (SPT), open field and elevated plus maze tests between 24 and 48 h post injection. MOX  was capable of significantly decreasing the immobility time in TST and increasing grooming time in SPT, suggesting an antidepressant effect. To further explain the molecular pathways underlying MOX's observed behavioral changes, neurotrophic factors and oxidative stress biomarkers were identified. An increase in brain-derived neurotrophic factor (Bdnf) mRNA was observed, possibly explaining the behavioral changes. An increase in total antioxidant capacity and glutathione S-transferase (GST) in the prefrontal cortex and a decrease of GST in the hippocampus of MOX-treated animals may have also contributed to these results. To our knowledge, this is the first study demonstrating the antidepressant-like effect of MOX in mice. While these results are preliminary, they’re promising. The utilization of GABAA modulators is an emerging and interesting new avenue to be explored in the treatment of neuropsychiatric ailments.

Referências

1. World Health Organization (Depression) [Internet]. [cited 2024 Jun 2]. Available from: https://www.who.int/news-room/fact-sheets/detail/depression

2. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry [Internet]. 2006 Nov;163(11):1905–17. Available from: http://dx.doi.org/10.1176/ajp.2006.163.11.1905

3. Cui L, Li S, Wang S, Wu X, Liu Y, Yu W, et al. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduction and Targeted Therapy [Internet]. 2024 Feb 9 [cited 2025 May 27];9(1):1–32. Available from: https://www.nature.com/articles/s41392-024-01738-y

4. Liu Q, He H, Yang J, Feng X, Zhao F, Lyu J. Changes in the global burden of depression from 1990 to 2017: Findings from the Global Burden of Disease study. Journal of Psychiatric Research [Internet]. 2020 Jul 1 [cited 2025 May 27];126:134–40. Available from: http://dx.doi.org/10.1016/j.jpsychires.2019.08.002

5. Food and Drug Administration. FDA approves first treatment for post-partum depression [Internet]. U.S. Food and Drug Administration. FDA; 2020 [cited 2024 Sep 17]. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-post-partum-depression

6. Zorumski CF, Paul SM, Izumi Y, Covey DF, Mennerick S. Neurosteroids, stress and depression: potential therapeutic opportunities. Neurosci Biobehav Rev [Internet]. 2013 Jan;37(1):109–22. Available from: http://dx.doi.org/10.1016/j.neubiorev.2012.10.005

7. Food and Drug Administration. FDA approves first treatment for post-partum depression [Internet]. U.S. Food and Drug Administration. FDA; 2020 [cited 2024 Sep 17]. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-post-partum-depression

8. Spampanato J, Gibson A, Dudek FE. The antihelminthic moxidectin enhances tonic GABA currents in rodent hippocampal pyramidal neurons. J Neurophysiol [Internet]. 2018 May 1;119(5):1693–8. Available from: http://dx.doi.org/10.1152/jn.00587.2017

9. Ménez C, Sutra JF, Prichard R, Lespine A. Relative neurotoxicity of ivermectin and moxidectin in Mdr1ab (-/-) mice and effects on mammalian GABA(A) channel activity. PLoS Negl Trop Dis [Internet]. 2012 Nov 1;6(11):e1883. Available from: http://dx.doi.org/10.1371/journal.pntd.0001883

10. Getachew B, Tizabi Y. Antidepressant effects of moxidectin, an antiparasitic drug, in a rat model of depression. Behav Brain Res [Internet]. 2019 Dec 30;376:112220. Available from: http://dx.doi.org/10.1016/j.bbr.2019.112220

11. Jiang CY, Qin XY, Yuan MM, Lu GJ, Cheng Y. 2,3,5,4 ′-Tetrahydroxystilbene-2-O-beta-D-glucoside Reverses Stress-Induced Depression via Inflammatory and Oxidative Stress Pathways. Oxidative Medicine and Cellular Longevity [Internet]. 2018 Jan 1 [cited 2025 May 27];2018(1):9501427. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1155/2018/9501427

12. Neis VB, et al. Single administration of agmatine reverses the depressive-like behavior induced by corticosterone in mice: Comparison with ketamine and fluoxetine. Pharmacology Biochemistry and Behavior [Internet]. 2018 Oct 1 [cited 2025 May 27];173:44–50. Available from: http://dx.doi.org/10.1016/j.pbb.2018.08.005

13. Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol [Internet]. 2003 Feb 28;463(1-3):3–33. Available from: http://dx.doi.org/10.1016/s0014-2999(03)01272-x

14. Haj-Mirzaian A, Amiri S, Kordjazy N, Rahimi-Balaei M, Haj-Mirzaian A, Marzban H, et al. Blockade of NMDA receptors reverses the depressant, but not anxiogenic effect of adolescence social isolation in mice. Eur J Pharmacol [Internet]. 2015 Mar 5;750:160–6. Available from: http://dx.doi.org/10.1016/j.ejphar.2015.01.006

15. Donatti AF, Soriano RN, Leite-Panissi CRA, Branco LGS, de Souza AS. Anxiolytic-like effect of hydrogen sulfide (H2S) in rats exposed and re-exposed to the elevated plus-maze and open field tests. Neurosci Lett [Internet]. 2017 Mar 6;642:77–85. Available from: http://dx.doi.org/10.1016/j.neulet.2017.01.059

16. Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology [Internet]. 1985; 85(3):367–70. Available from: http://dx.doi.org/10.1007/BF00428203

17. Hermes-Lima M, Willmore WG, Storey KB. Quantification of lipid peroxidation in tissue extracts based on Fe(III)xylenol orange complex formation. Free Radic Biol Med [Internet]. 1995 Sep;19(3):271–80. Available from: http://dx.doi.org/10.1016/0891-5849(95)00020-x

18. Cao G, Prior RL. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem [Internet]. 1998 Jun;44(6 Pt 1):1309–15. Available from: https://www.ncbi.nlm.nih.gov/pubmed/9625058

19. Li T, Liu Y, Zhao J, Miao S, Xu Y, Liu K, et al. Aggravation of acute kidney injury by mPGES-2 down regulation is associated with autophagy inhibition and enhanced apoptosis. Sci Rep [Internet]. 2017 Aug 31;7(1):10247. Available from: http://dx.doi.org/10.1038/s41598-017-10271-8

20. Peres DS, Theisen MC, Fialho MFP, Dalenogare DP, Rodrigues P, Kudsi SQ, et al. TRPA1 involvement in depression- and anxiety-like behaviors in a progressive multiple sclerosis model in mice. Brain Res Bull [Internet]. 2021 Oct;175:1–15. Available from: http://dx.doi.org/10.1016/j.brainresbull.2021.07.011

21. Ubhi K, Inglis C, Mante M, Patrick C, Adame A, Spencer B, et al. Fluoxetine ameliorates behavioral and neuropathological deficits in a transgenic model mouse of α-synucleinopathy. Exp Neurol [Internet]. 2012 Apr;234(2):405–16. Available from: http://dx.doi.org/10.1016/j.expneurol.2012.01.008

22. Park LT, Zarate CA Jr. Depression in the Primary Care Setting. N Engl J Med [Internet]. 2019 Feb 7;380(6):559–68. Available from: http://dx.doi.org/10.1056/NEJMcp1712493

23. Chen T, Cheng L, Ma J, Yuan J, Pi C, Xiong L, et al. Molecular mechanisms of rapid-acting antidepressants: New perspectives for developing antidepressants. Pharmacol Res [Internet]. 2023 Aug;194:106837. Available from: http://dx.doi.org/10.1016/j.phrs.2023.106837

24. Moncrieff J, Cooper RE, Stockmann T, Amendola S, Hengartner MP, Horowitz MA. The serotonin theory of depression: a systematic umbrella review of the evidence. Mol Psychiatry [Internet]. 2023 Aug;28(8):3243–56. Available from: http://dx.doi.org/10.1038/s41380-022-01661-0

25. Patterson R, Balan I, Morrow AL, Meltzer-Brody S. Novel neurosteroid therapeutics for post-partum depression: perspectives on clinical trials, program development, active research, and future directions. Neuropsychopharmacology [Internet]. 2024 Jan;49(1):67–72. Available from: http://dx.doi.org/10.1038/s41386-023-01721-1

26. Patatanian E, Nguyen DR. Brexanolone: A Novel Drug for the Treatment of Postpartum Depression. Journal of Pharmacy Practice [Internet]. 2022 [cited 2025 May 27]; Available from: https://journals.sagepub.com/doi/10.1177/0897190020979627

27. Food and Drug Administration. (Moxidectin) [Internet]. [cited 2024 Sep 17]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210867lbl.pdf

28. Huynh N, Arabian N, Naito A, Louie S, Jakowec MW, Asatryan L, et al. Preclinical development of moxidectin as a novel therapeutic for alcohol use disorder. Neuropharmacology [Internet]. 2017 Feb;113(Pt A):60–70. Available from: http://dx.doi.org/10.1016/j.neuropharm.2016.09.016

29. Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev [Internet]. 2005; 29(4-5):571–625. Available from: http://dx.doi.org/10.1016/j.neubiorev.2005.03.009

30. Weingartner H, Silberman E. Models of cognitive impairment: cognitive changes in depression. Psychopharmacol Bull [Internet]. 1982 Apr;18(2):27–42. Available from: https://www.ncbi.nlm.nih.gov/pubmed/7111602

31. Bijani S, Kashfi FS, Zahedi-Vanjani S, Nedaei K, Sharafi A, Kalantari-Hesari A, et al. The role of gender differences in the outcome of juvenile social isolation: Emphasis on changes in behavioral, biochemical and expression of nitric oxide synthase genes alteration. Heliyon [Internet]. 2024 Apr 15;10(7):e28964. Available from: http://dx.doi.org/10.1016/j.heliyon.2024.e28964

32. Kalueff AV, Tuohimaa P. The grooming analysis algorithm discriminates between different levels of anxiety in rats: potential utility for neurobehavioural stress research. J Neurosci Methods [Internet]. 2005 Apr 30;143(2):169–77. Available from: http://dx.doi.org/10.1016/j.jneumeth.2004.10.001

33. Isingrini E, Camus V, Le Guisquet AM, Pingaud M, Devers S, Belzung C. Association between repeated unpredictable chronic mild stress (UCMS) procedures with a high fat diet: a model of fluoxetine resistance in mice. PLoS One [Internet]. 2010 Apr 28;5(4):e10404. Available from: http://dx.doi.org/10.1371/journal.pone.0010404

34. Kryst J, Majcher-Maślanka I, Chocyk A. Effects of chronic fluoxetine treatment on anxiety- and depressive-like behaviors in adolescent rodents - systematic review and meta-analysis. Pharmacol Rep [Internet]. 2022 Oct;74(5):920–46. Available from: http://dx.doi.org/10.1007/s43440-022-00420-w

35. Kraeuter AK, Guest PC, Sarnyai Z. The Open Field Test for Measuring Locomotor Activity and Anxiety-Like Behavior. Methods Mol Biol [Internet]. 2019; 1916:99–103. Available from: http://dx.doi.org/10.1007/978-1-4939-8994-2_9

36. Czlonkowska AI, Sienkiewicz-Jarosz H, Siemiatkowski M, Bidziński A, Plaźnik A. The Effects of Neurosteroids on Rat Behavior and 3H-Muscimol Binding in the Brain. Pharmacol Biochem Behav [Internet]. 1999 Aug 1;63(4):639–46. Available from: https://www.sciencedirect.com/science/article/pii/S0091305799000301

37. Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther [Internet]. 2013 May;138(2):155–75. Available from: http://dx.doi.org/10.1016/j.pharmthera.2013.01.004

38. Wang CS, Kavalali ET, Monteggia LM. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell [Internet]. 2022 Jan 6;185(1):62–76. Available from: http://dx.doi.org/10.1016/j.cell.2021.12.003

39. Yu H, Chen ZY. The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin [Internet]. 2011 Jan;32(1):3–11. Available from: http://dx.doi.org/10.1038/aps.2010.184

40. Kaufman J, Yang BZ, Douglas-Palumberi H, Grasso D, Lipschitz D, Houshyar S, et al. Brain-derived neurotrophic factor-5-HTTLPR gene interactions and environmental modifiers of depression in children. Biol Psychiatry [Internet]. 2006 Apr 15;59(8):673–80. Available from: http://dx.doi.org/10.1016/j.biopsych.2005.10.026

41. Castrén E, Rantamäki T. The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. Dev Neurobiol [Internet]. 2010 Apr;70(5):289–97. Available from: http://dx.doi.org/10.1002/dneu.20758

42. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol [Internet]. 2007; 39(1):44–84. Available from: http://dx.doi.org/10.1016/j.biocel.2006.07.001

43. Hassamal S. Chronic stress, neuroinflammation, and depression: an overview of pathophysiological mechanisms and emerging anti-inflammatories. Front Psychiatry [Internet]. 2023 May 11;14:1130989. Available from: http://dx.doi.org/10.3389/fpsyt.2023.1130989

44. Black CN, Bot M, Scheffer PG, Cuijpers P, Penninx BWJH. Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology [Internet]. 2015 Jan;51:164–75. Available from: http://dx.doi.org/10.1016/j.psyneuen.2014.09.025

45. Malacarne IT, De Souza DV, Rosario BDA, Viana MDB, Pereira CDS, Estadella D, et al. Genotoxicity, oxidative stress, and inflammatory response induced by crack-cocaine: relevance to carcinogenesis. Environ Sci Pollut Res Int [Internet]. 2021 Mar;28(12):14285–92. Available from: http://dx.doi.org/10.1007/s11356-021-12617-2

46. Chakraborty S, Dasgupta A, Das HN, Singh OP, Mandal AK, Mandal N. Study of oxidative stress in obsessive compulsive disorder in response to treatment with Fluoxetine. Indian J Clin Biochem [Internet]. 2009 Apr;24(2):194–7. Available from: http://dx.doi.org/10.1007/s12291-009-0035-9

47. da Silva AI, Monteiro Galindo LC, Nascimento L, Moura Freitas C, Manhaes-de-Castro R, Lagranha CJ, et al. Fluoxetine treatment of rat neonates significantly reduces oxidative stress in the hippocampus and in behavioral indicators of anxiety later in postnatal life. Can J Physiol Pharmacol [Internet]. 2014 Apr;92(4):330–7. Available from: http://dx.doi.org/10.1139/cjpp-2013-0321

48. Abdel Salam OME, Mohammed NA, Sleem AA, Farrag AR. The effect of antidepressant drugs on thioacetamide-induced oxidative stress. Eur Rev Med Pharmacol Sci [Internet]. 2013 Mar;17(6):735–44. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23609356

49. Aguilar Diaz De Leon J, Borges CR. Evaluation of Oxidative Stress in Biological Samples Using the Thiobarbituric Acid Reactive Substances Assay. J Vis Exp [Internet]. 2020 May 12;(159). Available from: http://dx.doi.org/10.3791/61122

50. Pellegrini, N., Vitaglione, P., Granato, D. and Fogliano, V. Twenty-five years of total antioxidant capacity measurement of foods and biological fluids: merits and limitations. J. Sci. Food Agric., 2020 100: 5064-5078. https://doi.org/10.1002/jsfa.9550

51. Singh RR, Reindl KM. Glutathione S-Transferases in Cancer. Antioxidants (Basel) [Internet]. 2021 Apr 29;10(5). Available from: http://dx.doi.org/10.3390/antiox10050701

52. Gawryluk JW, Wang JF, Andreazza AC, Shao L, Yatham LN, Young LT. Prefrontal cortex glutathione S-transferase levels in patients with bipolar disorder, major depression and schizophrenia. Int J Neuropsychopharmacol [Internet]. 2011 Sep;14(8):1069–74. Available from: http://dx.doi.org/10.1017/S1461145711000617

53. Gram L. Fluoxetine. N Engl J Med [Internet]. 1994 Nov 17;331(20):1354–61. Available from: http://dx.doi.org/10.1056/NEJM199411173312008

54. Kim JG, Jung HS, Kim KJ, Min SS, Yoon BJ. Basal blood corticosterone level is correlated with susceptibility to chronic restraint stress in mice. Neurosci Lett [Internet]. 2013 Oct 25;555:137–42. Available from: http://dx.doi.org/10.1016/j.neulet.2013.09.031

55. Crochemore C, Lu J, Wu Y, Liposits Z, Sousa N, Holsboer F, et al. Direct targeting of hippocampal neurons for apoptosis by glucocorticoids is reversible by mineralocorticoid receptor activation. Mol Psychiatry [Internet]. 2005 Aug;10(8):790–8. Available from: http://dx.doi.org/10.1038/sj.mp.4001679

56. Chopra K, Kumar B, Kuhad A. Pathobiological targets of depression. Expert Opin Ther Targets [Internet]. 2011 Apr;15(4):379–400. Available from: http://dx.doi.org/10.1517/14728222.2011.553603

57. Cheiran Pereira G, Piton E, Moreira Dos Santos B, Ramanzini LG, Muniz Camargo LF, Menezes da Silva R, et al. Microglia and HPA axis in depression: An overview of participation and relationship. World J Biol Psychiatry [Internet]. 2022 Mar;23(3):165–82. Available from: http://dx.doi.org/10.1080/15622975.2021.1939154

58. Mody I, Maguire J. The reciprocal regulation of stress hormones and GABA(A) receptors. Front Cell Neurosci [Internet]. 2011 Jan;6:4. Available from: http://dx.doi.org/10.3389/fncel.2012.00004

59. Miklós IH, Kovács KJ. GABAergic innervation of corticotropin-releasing hormone (CRH)-secreting parvocellular neurons and its plasticity as demonstrated by quantitative immunoelectron microscopy. Neuroscience [Internet]. 2002 ;113(3):581–92. Available from: http://dx.doi.org/10.1016/s0306-4522(02)00147-1

60. Sarkar J, Wakefield S, MacKenzie G, Moss SJ, Maguire J. Neurosteroidogenesis is required for the physiological response to stress: role of neurosteroid-sensitive GABAA receptors. J Neurosci [Internet]. 2011 Dec 14;31(50):18198–210. Available from: http://dx.doi.org/10.1523/JNEUROSCI.2560-11.2011

61. Cullinan WE, Ziegler DR, Herman JP. Functional role of local GABAergic influences on the HPA axis. Brain Struct Funct [Internet]. 2008 Sep;213(1-2):63–72. Available from: http://dx.doi.org/10.1007/s00429-008-0192-2

62. Schüle C, Nothdurfter C, Rupprecht R. The role of allopregnanolone in depression and anxiety. Prog Neurobiol [Internet]. 2014 Feb;113:79–87. Available from: http://dx.doi.org/10.1016/j.pneurobio.2013.09.003

63. Chen S, Gao L, Li X, Ye Y. Allopregnanolone in mood disorders: Mechanism and therapeutic development. Pharmacol Res [Internet]. 2021 Jul;169:105682. Available from: http://dx.doi.org/10.1016/j.phrs.2021.105682

64. Azhar Y, Din AU. Brexanolone. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31082098

Downloads

Publicado

2026-01-02

Como Citar

Schneider, G. K., Arboit, F., Schnath, V., Bochi, G. V., Pavanato, M. A., Finamor, I. A., … Zanchet, E. M. (2026). Antidepressant exploration of moxidectin: Effects on behavior, neurotrophic factors and oxidative stress biomarkers in mice. Revista Contexto & Saúde, 26(51), e16605. https://doi.org/10.21527/2176-7114.2026.51.16605

Edição

Seção

Artigo Original