Efeitos agudos de exercícios de respiração lenta e controlada sobre a pressão arterial e modulação autônoma cardíaca em pacientes hipertensos

Autores

DOI:

https://doi.org/10.21527/2176-7114.2024.48.13894

Palavras-chave:

Hipertensão, pressão arterial sistólica, Sistema nervoso autónomo, Sistema nervoso simpático, Exercícios de respiração

Resumo

O objetivo do presente estudo foi avaliar a influência de exercícios respiratórios lentos e controlados (SCBE) na pressão arterial e modulação autonômica cardíaca em pacientes hipertensos. Foram avaliados 29 hipertensos em duas coletas de dados (período entre 1 a 3 dias). Em cada avaliação, os dados foram coletados após 10 min de respiração espontânea (entre 12 e 20 respirações por minuto – rpm) e 10 min de SCBE (12 rpm, no ritmo de estímulo verbal padronizado). A pressão arterial foi avaliada por monitor multiparamétrico e a modulação autonômica cardíaca pela técnica de variabilidade de frequência. O SCBE reduziu a pressão arterial sistólica (1ª avaliação: -4,8 mmHg e 2ª avaliação: -4,3 mmHg), diminuiu a atividade simpática em 18% e modificou a modulação autonômica em cerca de 50%. O SCBE reduziu tanto a pressão arterial sistólica quanto a atividade simpática e pode ser usado no controle da pressão arterial de pacientes hipertensos.

Referências

Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart Disease and Stroke Statistics’2017 Update: A Report from the American Heart Association. Circulation 2017;135(10):146–603; doi: 10.1161/CIR.0000000000000485.

Vaseghi M, Shivkumar K. The Role of the Autonomic Nervous System in Sudden Cardiac Death. Prog Cardiovasc Dis 2008;50(6):404–419; doi: 10.1016/j.pcad.2008.01.003.

Merino-Jiménez C, Miguel F, Feria Pliego JA, et al. Sympathetic Hyperactivity and Age Affect Segregation and Expression of Neurotransmitters. Front Cell Neurosci 2018;12; doi: 10.3389/fncel.2018.00411.

Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Psychol 2014;5(1040):1–19; doi: 10.3389/fpsyg.2014.01040.

Rizas KD, Nieminen T, Barthel P, et al. Sympathetic activity-associated periodic repolarization dynamics predict mortality following myocardial infarction. Journal of Clinical Investigation 2014;124(4):1770–1780; doi: 10.1172/JCI70085.

Task Force of TES of C and TNAS of P and E. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur Heart J 1996;17(x):354–381; doi: https://doi.org/10.1161/01.CIR.93.5.1043.

Whelton PK, Carey RM. The 2017 Clinical Practice Guideline for High Blood Pressure. JAMA - Journal of the American Medical Association 2017;318(21):2073–2074; doi: 10.1001/jama.2017.18209.

Dudenbostel T, Siddiqui M, Oparil S, et al. Refractory hypertension: A novel phenotype of antihypertensive treatment failure. Hypertension 2016;67(6):1085–1092; doi: 10.1161/HYPERTENSIONAHA.116.06587.

Gkaliagkousi E, Gavriilaki E, Douma S. Effects of acute and chronic exercise in patients with essential hypertension: Benefits and risks. Am J Hypertens 2015;28(4):429–439; doi: 10.1093/ajh/hpu203.

Hering D, Narkiewicz K. Sympathetic Nervous System and Arterial Hypertension: New Perspectives, New Data. Kardiol Pol 2013;71(5):441–446; doi: 10.5603/KP.2013.0089.

do Amaral Sartori S, Stein C, Coronel CC, et al. Effects of Transcutaneous Electrical Nerve Stimulation in Autonomic Nervous System of Hypertensive Patients: A Randomized Controlled Trial. Curr Hypertens Rev 2018;14(1):66–71; doi: 10.2174/1573402114666180416155528.

Chang Q, Liu R, Li C, et al. Effects of slow breathing rate on blood pressure and heart rate variabilities in essential hypertension. Int J Cardiol 2015;185:52–54; doi: 10.1016/j.ijcard.2015.02.105.

Levin CJ, Swoap SJ. The impact of deep breathing and alternate nostril breathing on heart rate variability: a human physiology laboratory. Adv Physiol Educ 2019;43(x):270–276; doi: 10.1152/advan.00019.2019.

Li C, Chang Q, Zhang J, et al. Effects of slow breathing rate on heart rate variability and arterial baroreflex sensitivity in essential hypertension. Medicine (United States) 2018;97(18); doi: 10.1097/MD.0000000000010639.

Melo HM, Martins TC, Nascimento LM, et al. Ultra-short heart rate variability recording reliability: The effect of controlled paced breathing. Annals of Noninvasive Electrocardiology 2018;23(5):1–9; doi: 10.1111/anec.12565.

Sasaki K, Maruyama R. Consciously controlled breathing decreases the high-frequency component of heart rate variability by inhibiting cardiac parasympathetic nerve activity. Tohoku Journal of Experimental Medicine 2014;233(3):155–163; doi: 10.1620/tjem.233.155.

Zou Y, Zhao X, Hou YY, et al. Meta-Analysis of Effects of Voluntary Slow Breathing Exercises for Control of Heart Rate and Blood Pressure in Patients With Cardiovascular Diseases. American Journal of Cardiology 2017;120(1):148–153; doi: 10.1016/j.amjcard.2017.03.247.

Stein C, Dal Lago P, Ferreira JB, et al. Transcutaneous electrical nerve stimulation at different frequencies on heart rate variability in healthy subjects. Auton Neurosci 2011;165(2):205–208; doi: 10.1016/j.autneu.2011.07.003.

de Nardi AT, Hauck M, Franco OS, et al. Different frequencies of transcutaneous electrical nerve stimulation on sympatho-vagal balance. Acta Scientiarum - Health Sciences 2017;39(1):9–16; doi: 10.4025/actascihealthsci.v39i1.32854.

Franco OS, Júnior AOS, Signori LU, et al. Cardiac autonomic modulation assessed by heart rate variability in children with asthma. Pediatr Pulmonol 2020;55(6):1334–1339; doi: 10.1002/ppul.24714.

McCraty R, Shaffer F. Heart rate variability: New perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob Adv Health Med 2015;4(1):46–61; doi: 10.7453/gahmj.2014.073.

Russo MA, Santarelli DM, O’Rourke D. The physiological effects of slow breathing in the healthy human. Breathe 2017;13(4):298–309; doi: 10.1183/20734735.009817.

Berntson GG, Cacioppo JT, Quigley KS. Respiratory sinus arrhythmia: Autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology 1993;30(x):183–196; doi: https://doi.org/10.1111/j.1469-8986.1993.tb01731.x.

Mestanik M, Mestanikova A, Langer P, et al. Respiratory sinus arrhythmia – testing the method of choice for evaluation of cardiovagal regulation. Respir Physiol Neurobiol 2019;259:86–92; doi: 10.1016/j.resp.2018.08.002.

Lipp MEN. Stress management training and systemic hypertension. Rev Bras Hipertens 2007;14(2):89–93.

Lopes DA da C, Souza ALT de, Gusmão JL de. Effect of slow and guided breathing exercise on blood pressure in institutionalized hypertensive elderly. Saúde e Pesquisa 2021;14(4):1–12; doi: 10.17765/2176-9206.2021v14n4e9025.

Pinheiro CH da J, Medeiros RAR, Pinheiro DGM, et al. Spontaneous Respiratory Modulation Improves Cardiovascular Control in Essential Hypertension. Arq Bras Cardiol 2007;88(6):576–583; doi: https://doi.org/10.1590/S0066-782X2007000600005.

Signori LU, Rubin Neto LJ, Lima KS de, et al. Influence of Controlled Breath on Healthy Adult Autonomic Heart Modulation. Acta Scientiarum Health Sciences 2022;(in press):1–17.

Sun BB, Maranville JC, Peters JE, et al. Genomic atlas of the human plasma proteome. Nature 2018;558(7708):73–79; doi: 10.1038/s41586-018-0175-2.

Wehrwein EA, Orer HS, Barman SM. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. Compr Physiol 2016;6(3):1239–1278; doi: 10.1002/CPHY.C150037.

Downloads

Publicado

2024-02-21

Como Citar

Rubin Neto, L. J., Puntel, G. O., Ferrão, D. Q. ., Lamberti, M. H., Arbiza, B. C. C., de Lima, K. S., da Silva , A. M. V., & Signori, L. U. (2024). Efeitos agudos de exercícios de respiração lenta e controlada sobre a pressão arterial e modulação autônoma cardíaca em pacientes hipertensos. Revista Contexto &Amp; Saúde, 24(48), e13894. https://doi.org/10.21527/2176-7114.2024.48.13894

Edição

Seção

Artigo Original