

DIAGNÓSTICO TEMPORAL E SAZONAL DA PAISAGEM E IMPACTOS ANTROPOGÊNICOS: Avaliação Ambiental de uma Bacia Hidrográfica Utilizando Protocolo de Avaliação Rápida (PAR)

http://dx.doi.org/10.21527/2237-6453.2025.62.16186

Submetido em: 15/7/2024 Aceito em: 16/12/2024 Publicado em: 20/3/2025

José Eduardo Ferreira da Silva Gadêlha¹, Raysa Moraes Castro² Suzana Maria Loures de Oliveira Marcionílio³, Karine Borges Machado⁴ Stefany Cristiny Ferreira da Silva Gadêlha⁵

RESUMO

A crescente preocupação com a degradação dos recursos hídricos, exacerbada pelas mudanças climáticas e pela urbanização acelerada, tem impulsionado mudanças institucionais e legislativas. Este estudo teve como objetivo a avaliação de riachos situados na bacia do Rio São Thomas, no município de Rio Verde, Goiás, Brasil, por meio do Protocolo de Avaliação Rápida, destacando os principais pontos de poluição e características que compreendem o mesmo, para caracterizar visual e paisagisticamente as condições dos córregos durante períodos de seca e chuva. Observou-se uma variabilidade na qualidade da água entre os pontos de coleta, com os pontos Sapo 2, Sapo 7 e Barrinha, destacando-se por condições superiores, enquanto Rocha, Buriti e São Tomás mostraram condições menos favoráveis, com maior presença de poluição. Visualmente foram notadas variações nos parâmetros nos períodos de seca e chuva. Os resultados do teste t pareado, no entanto, não indicaram diferenças estatisticamente significativas entre os períodos seco e chuvoso (t = -2.0156, p-valor = 0.0786). Isso sugere que, embora haja indicações visuais de mudanças sazonais, a evidência estatística não suporta diferenças significativas na qualidade da água entre os períodos analisados. Enquanto, portanto, as flutuações sazonais são evidentes visualmente, a análise estatística não confirma sua significância. Esses resultados destacam a importância de estudos sazonais para compreender as variações na qualidade da água ao longo do tempo e embasar políticas de gestão ambiental que promovam a sustentabilidade dos recursos hídricos e assegurem água de qualidade para as comunidades locais.

Palavras-chave: poluição; protocolo de avaliação rápida; recursos hídricos.

TEMPORAL AND SEASONAL LANDSCAPE DIAGNOSIS AND ANTHROPOGENIC IMPACTS: ENVIRONMENTAL ASSESSMENT OF A WATERSHED USING THE RAPID ASSESSMENT PROTOCOL

ABSTRACT

The growing concern about the degradation of water resources, exacerbated by climate change and accelerated urbanization, has driven institutional and legislative changes. This study aimed to evaluate streams located in the São Thomas River basin, in the municipality of Rio Verde, Goiás, Brazil, using the Rapid Assessment Protocol, highlighting the main pollution points and their characteristics to visually and landscape characterize the conditions of the streams during dry and rainy periods. Variability in water quality was observed among the sampling points, with Sapo 2, Sapo 7, and Barrinha standing out for their superior conditions, while Rocha, Buriti, and São Tomás showed

¹ Instituto Federal Goiano. Programa de Pós-Graduação *Stricto Sensu* em Agroquímica. Rio Verde/GO, Brasil. https://orcid.org/0000-0002-9170-8578

² Instituto Federal Goiano. Programa de Pós-Graduação *Stricto Sensu* em Agroquímica. Rio Verde/GO, Brasil. https://orcid.org/0000-0001-8621-3813

³ Instituto Federal Goiano. Rio Verde/GO, Brasil. https://orcid.org/0000-0001-7177-380X

⁴ Universidade Estadual de Goiás. Porangatu/GO, Brasil. https://orcid.org/0000-0003-2744-7964

⁵ Instituto Federal Goiano. Rio Verde/GO, Brasil. https://orcid.org/0009-0002-0977-5374

José Eduardo Ferreira da Silva Gadêlha – Raysa Moraes Castro – Suzana Maria Loures de Oliveira Marcionílio Karine Borges Machado – Stefany Cristiny Ferreira da Silva Gadêlha

less favorable conditions with higher pollution levels. Visually, variations in parameters were noted between dry and rainy periods. However, the results of the paired t-test did not indicate statistically significant differences between the dry and rainy periods (t = -2.0156, p-value = 0.0786). This suggests that, although visual indications of seasonal changes exist, the statistical evidence does not support significant differences in water quality between the analyzed periods. Therefore, while seasonal fluctuations are visually evident, the statistical analysis does not confirm their significance. These results underscore the importance of seasonal studies to understand variations in water quality over time and to support environmental management policies that promote the sustainability of water resources and ensure quality water for local communities.

Keywords: pollution; rapid assessment protocol; water resources.

INTRODUÇÃO

A redução da disponibilidade quali-quantitativa da água no mundo está intimamente ligada às formas de uso e ocupação do solo, aos processos produtivos da agricultura e da pecuária, à urbanização e à geração de efluentes domésticos e industriais (Smith *et al.*, 2023). Nesse contexto, a realização de diagnósticos de bacias hidrográficas focados no uso e ocupação do solo e na qualidade da água, torna-se uma ferramenta essencial para a gestão hídrica (Rosa *et al.*, 2017).

A expansão da urbanização e o crescimento populacional têm apresentado desafios significativos para a gestão municipal, especialmente devido às ocupações irregulares frequentemente localizadas próximas aos rios (Campos; Nucci, 2021).

As bacias hidrográficas, com sua grande heterogeneidade de elementos naturais, refletem problemas que se repetem em diferentes regiões, com rios cada vez mais degradados, configurando um dos maiores desafios atuais. Entre os vários ecossistemas, o aquático é o mais crítico, exigindo estudos prioritários de seus aspectos bióticos e abióticos. As características físicas da água facilitam o transporte de substâncias e elementos químicos tóxicos, além de microrganismos patogênicos, limitando seu uso para fins específicos. Assim, a preservação e a gestão eficientes das bacias hidrográficas são fundamentais para assegurar a qualidade e a disponibilidade da água.

O monitoramento das águas superficiais desempenha um papel crucial na avaliação da qualidade fundamental desses recursos hídricos; oferece uma ferramenta eficaz para identificar e avaliar os impactos ambientais tanto a montante quanto a jusante, permitindo, também, a identificação da origem, extensão e transporte de substâncias como sais, nutrientes, pesticidas e outros contaminantes (Tegu *et al.*, 2023). O monitoramento contribui significativamente para o gerenciamento adequado das águas superficiais em grandes corpos d'água, fornecendo dados essenciais para análise e tomadas de decisão. Ao analisar os resultados obtidos é possível identificar potenciais preocupações com a qualidade da água e desenvolver estratégias de intervenção apropriadas para abordar essas questões.

A abordagem do Protocolo de Avaliação Rápida é uma ferramenta valiosa no enfrentamento da presença de poluentes emergentes nos ecossistemas aquáticos. Esses poluentes, muitas vezes não regulamentados e de difícil monitoramento, exigem estratégias ágeis para avaliar seu impacto e instituir medidas mitigadoras.

José Eduardo Ferreira da Silva Gadêlha — Raysa Moraes Castro — Suzana Maria Loures de Oliveira Marcionílio Karine Borges Machado — Stefany Cristiny Ferreira da Silva Gadêlha

O Protocolo de Avaliação Rápida oferece uma metodologia eficaz para identificar, medir e avaliar a contaminação por poluentes emergentes de maneira mais ágil do que métodos convencionais. Ao combinar amostragem, análise e interpretação de dados de forma rápida e eficiente, o protocolo permite uma resposta mais imediata aos desafios apresentados por esses compostos (Zamboni, 2019).

A flexibilidade do Protocolo de Avaliação Rápida destaca-se na capacidade de se adaptar a diferentes contextos e escalas, o que é crucial ao lidar com poluentes emergentes que podem variar em concentração e origem. Essa abordagem ágil permite uma avaliação mais dinâmica e a criação de medidas de gestão adequadas (Rodrigues; Malafaia; Castro, 2008).

Os Protocolos de Avaliação Rápida (PAR) avaliam de forma abrangente as características de um trecho de rio, levando em consideração o estado de conservação ou a degradação do ambiente fluvial. Suas principais características incluem viabilidade econômica e facilidade de aplicação. Em regiões com recursos financeiros limitados e problemas significativos de qualidade da água, os PARs podem ser empregados em programas de monitoramento ambiental (Rodrigues; Castro; Malafaia, 2010).

O PAR tem sua origem no Protocolo de Avaliação Visual de Habitat – Visual-based Habitat Assessment – que integra os Protocolos de Bioavaliação Rápida – Rapid Bioassessment Protocols (RBP), desenvolvidos para atender a necessidade de reestruturação dos programas de monitoramento norte-americanos, de forma a suprir as demandas que despontaram na década de 1980. Esses protocolos são ferramentas de monitoramento de baixo custo, cientificamente válidos e que geram resultados rápidos para as decisões de gestão (Campos; Nucci, 2021).

Campos e Nucci (2021), em seu estudo, concluíram que o PAR demonstrou ser uma ferramenta de monitoramento simples e de fácil utilização, podendo, com isso, ser aplicado sem grandes dificuldades por órgãos públicos bem como favorecer a participação popular nas tomadas de decisão, beneficiando a gestão dos recursos hídricos e o planejamento ambiental como um todo. No caso do planejamento urbano brasileiro, por exemplo, alguns instrumentos norteadores são constituídos com base em consulta e/ou aprovação em audiências públicas, como os Planos de Bacia e Planos Diretores. Sendo assim, quanto mais acessíveis forem as informações, mais efetiva é a participação popular, e o PAR pode contribuir para melhorar essa acessibilidade.

No Brasil, o controle ambiental baseia-se na análise hídrica, que é realizada de maneira geral por meio de protocolos de avaliação do ecossistema. Acrescenta-se que tais protocolos, na maioria das vezes, são adaptados devido à variação existente na biodiversidade do país (Felix; Alves; Lima, 2019).

Os PARs não são engessados, por isso são permitidas adaptações no instrumento para a sua utilização em qualquer tipo de ambiente. Tais adequações são requeridas, pois os cursos d'água se distinguem-se conforme o tipo de relevo, geologia e vegetação (Rodrigues; Malafaia; Castro, 2008).

Neste estudo o Protocolo de Avaliação Rápida (PAR) (Rodrigues; Malafaia; Castro, 2008) foi utilizado com adaptações a fim de auxiliar o monitoramento da paisagem e a identificação de cenários de ações antrópicas (Quadro 1). O PAR foi aplicado visando a diagnosticar informações qualitativas do meio em que se encontra o rio e complementar as informações sobre o estudo dos microplásticos. Esta adaptação do PAR contempla 15 parâmetros com escala de 0, 5 e 10

José Eduardo Ferreira da Silva Gadêlha – Raysa Moraes Castro – Suzana Maria Loures de Oliveira Marcionílio Karine Borges Machado – Stefany Cristiny Ferreira da Silva Gadêlha

pontos, onde a pontuação máxima poderia ser 150 e, de acordo com essa adaptação, indicaria boas condições para os cursos hídricos. Assim, este estudo teve como objetivo a avaliação de riachos situados na bacia do Rio São Thomas, no município de Rio Verde, Goiás, Brasil, por intermédio do Protocolo de Avaliação Rápida, destacando os principais pontos de poluição e características que compreendem o mesmo.

MATERIAIS E MÉTODOS

A metodologia de coleta de dados para este estudo sobre qualidade hídrica baseou-se na adaptação do protocolo de avaliação rápida desenvolvido por Rodrigues, Malafaia e Castro (2008). Esta adaptação incluiu a adição de novos parâmetros específicos para a bacia hidrográfica em estudo, com o objetivo de obter uma análise mais abrangente e detalhada.

O protocolo original foi revisado e ajustado para incluir parâmetros adicionais que foram considerados relevantes para a avaliação da qualidade da água na bacia hidrográfica. Esses novos parâmetros foram determinados com base em uma revisão da literatura e consultas na área. A versão final do protocolo contemplou uma série de indicadores que permitem uma avaliação integrada da qualidade hídrica (Quadro 1).

Para captar a variação sazonal da qualidade da água, o protocolo foi aplicado em dois períodos distintos do ano: um período de alta precipitação e outro de baixa precipitação. Esta abordagem permitiu contrastar os resultados e observar como diferentes condições climáticas influenciam os parâmetros avaliados. As datas de coleta foram escolhidas com base em dados históricos de precipitação da região, garantindo que os períodos representassem fielmente as condições de máxima e mínima precipitação.

Os pontos de coleta foram escolhidos estrategicamente ao longo da bacia hidrográfica para capturar uma representação abrangente das condições da água. Estes pontos incluíram áreas de diferentes usos do solo e proximidade com fontes potenciais de poluição. Os parâmetros físico-químicos selecionados para o estudo incluíram pH, condutividade elétrica e turbidez. Estes parâmetros foram medidos utilizando uma sonda multiparâmetros *in loco*, que permitiu a obtenção de dados precisos e imediatos sobre a qualidade da água. A sonda foi calibrada antes de cada uso de acordo com as especificações do fabricante para garantir a acurácia das medições.

Cada ponto foi registrado com suas coordenadas geográficas e condições ambientais observadas no momento da coleta. Após a coleta os dados foram registrados em planilhas padronizadas.

Além dos parâmetros estabelecidos pelo Protocolo de Avaliação Rápida, foram meticulosamente coletados dados físico-químicos da água: turbidez, pH e condutividade. A inclusão destes parâmetros físico-químicos aprimora a capacidade diagnóstica, permitindo uma compreensão mais profunda das dinâmicas ecológicas e da qualidade ambiental do corpo hídrico sob investigação.

José Eduardo Ferreira da Silva Gadêlha — Raysa Moraes Castro — Suzana Maria Loures de Oliveira Marcionílio Karine Borges Machado — Stefany Cristiny Ferreira da Silva Gadêlha

Quadro 1 – Protocolo de Avaliação Rápida utilizado para investigar as oito sub-bacias na Bacia Hidrográfica do Córrego do Sapo

Parâmetro 1: Características do fundo do rio						
Ótima	Boa	-	Ruim			
Existem galhos ou troncos, cascalhos (pedras), folhas e plantas aquáticas no fundo do rio.	Há poucos galhos ou troncos, cascalhos (pedras) no fundo do rio.		Não existem galhos ou troncos, cascalhos (pedras), folhas e plantas aquáticas no fundo do rio			
10	5		0			
P	arâmetro 2: Sedimen	tos no fundo do	rio			
Não se observa acúmulo de lama ou areia no fundo do rio. O fundo do rio está normal.	Observa-se a presenc areia no fundo do ric é possível ver as ped aquáticas em alguns	o, mas ainda ras e plantas	O fundo do rio apresenta muita lama ou areia, cobrindo galhos, troncos, cascalhos (pedras). Não se observa abrigos naturais para os animais se esconderem ou reproduzirem.			
10	5		0			
Pa	râmetro 3: Ocupação	das margens do	rio			
Existem plantas nas duas margens do rio, incluindo arbustos (pequenas árvores) e	Existem campos de p (pasto) ou plantaçõe	oastagem	Existem residências (casas), comércios ou indústrias bem perto do rio.			
10	5		0			
	Parâmetro 4	l: Erosão				
Não existe desmoronamento ou deslizamento dos barrancos do rio.	Apenas um dos barra está desmoronando.		Os barrancos dos rios, nas duas margens, estão desmoronando. Há muitos deslizamentos.			
10	5		0			
Não há lixo no fundo ou nas margens do rio.	Parâmetro Há pouco lixo domés ou nas margens do ri garrafas pet, plástico latinhas de alumínio,	stico no fundo io (papel, es,	Há muito lixo no fundo ou nas margens do rio.			
10	5	,	0			
Pa	râmetro 6: Alteraçõe	s no canal do ria	cho			
O rio apresenta canal normal. Não existem construções que alteram a paisagem.	Em alguns trechos do rio as margens estão cimentadas ou existem pequenas pontes.		As margens estão todas cimentadas, existem pontes ou represas no rio. Alterações na paisagem são evidentes.			
10	5		0			
Pai	râmetro 7: Esgoto dor	méstico ou indus				
Não se observam canalizações de esgoto doméstico ou industrial.	Existem canalizações de esgoto doméstico ou industrial em alguns trechos do rio.		Existem canalizações de esgoto doméstico e industrial em um longo trecho do rio ou em vários trechos.			
10	5		0			
	Parâmetro 8: Oleo	sidade da água				
Não se observa	observa. Observam-se m		anchas de óleo na água.			
10			0			

José Eduardo Ferreira da Silva Gadêlha — Raysa Moraes Castro — Suzana Maria Loures de Oliveira Marcionílio Karine Borges Machado — Stefany Cristiny Ferreira da Silva Gadêlha

	Parâmetro 9: Plan	tas aquáticas				
Parâmetro 9: Plantas aquáticas						
Observam-se plantas aquáticas em vários trechos do rio.	Existem poucas plantas aquáticas no rio.		Não se observa plantas aquáticas no rio.			
			0			
10	5		10			
Parâmetro 10: Animais						
Observam-se com facilidade	Observam-se apenas	alguns peixes,	Não se observa peixes, anfíbios			
peixes, anfíbios (sapos, rãs ou	anfíbios (sapos, rãs ou pererecas)		(sapos, rãs ou pererecas) ou			
pererecas) ou insetos aquáticos	ou insetos aquáticos no trecho		insetos aquáticos no trecho			
no trecho avaliado.	avaliado.		avaliado.			
10	5		0			
Parâmetro 11: Odor da água						
Não tem cheiro.	Apresenta um óleo e/ou de s		cheiro de esgoto (ovo podre), de gasolina.			
10			0			
Parâmetro 12: Presença de Macroplásticos						
Não há presença	Apresenta pouca presença		Há muita presença			
10	5		0			
Parâmetro 13: Presença de Microplásticos						
Não identificado a olho nu	Apresenta pouca presença		Há presença.			
10	5		0			
Parâmetro 14: Poluição em torno do corpo hídrico por descarte incorreto de itens plásticos						
Não há presença	Apresenta pouca presença		Há muita presença.			
10	5		0			
Parâmetro 15: Proximidade com centro urbano/residências						
Ponto isolado		Muito próximo				
10		0				

Fonte: Elaborado por Rodrigues; Malafaia; Castro (2008).

LOCAL DE ESTUDO

O município de Rio Verde, localizado na Microrregião Sudoeste do Estado de Goiás, no Centro-Oeste brasileiro, possui uma área de 8.388,295 km² e uma população de 225.696 habitantes, com uma densidade de 26,95 hab./km² (IBGE, 2019). A topografia de Rio Verde é plana e levemente ondulada, com 5% de declividade, e o solo é do tipo latossolo vermelho escuro com texturas argilosa e areno-argilosa, coberto por vegetação de cerrado e matas residuais.

O clima da região apresenta duas estações bem-definidas: estiagem, que ocorre entre os meses de maio e outubro, e chuvosa, caracterizada entre novembro e abril. A temperatura média anual varia de 20°C a 35°C, e a vegetação é composta por cerrado e matas residuais.

Para o desenvolvimento deste trabalho foram considerados oito córregos diferentes que compõem a bacia hidrográfica em estudo. Dentre esses, o Córrego do Sapo foi selecionado para uma amostragem mais intensiva devido à sua maior extensão e importância no sistema hidrológico local. Este córrego, além de ser o mais extenso, atua como o principal receptor das

José Eduardo Ferreira da Silva Gadêlha – Raysa Moraes Castro – Suzana Maria Loures de Oliveira Marcionílio Karine Borges Machado – Stefany Cristiny Ferreira da Silva Gadêlha

águas provenientes dos outros córregos, desempenhando um papel crucial na dinâmica hídrica da bacia. A amostragem intensiva no Córrego do Sapo permitiu uma avaliação mais detalhada e representativa das condições gerais da qualidade da água na bacia, fornecendo dados essenciais para uma análise compreensiva dos impactos ambientais e das variações sazonais observadas. Além disso, é importante ressaltar que a água desses córregos urbanos é utilizada para abastecimento e também para áreas de irrigação agrícola.

Na bacia hidrográfica do Córrego do Sapo identificou-se que os recursos hídricos são amplamente utilizados pela população para diversas atividades. Entre os usos destacados estão a função de macrodrenagem urbana, irrigação de hortaliças, atividades de pesca, dessedentação de animais e o recebimento de efluentes tratados por indústrias (Santos *et al.*, 2019). É importante ressaltar que o Córrego do Sapo é um dos afluentes do Rio São Tomás, principal corpo hídrico responsável pelo abastecimento de água potável da cidade de Santa Helena de Goiás (Alves *et al.*, 2016).

ANÁLISE DOS DADOS

O teste t de permutação pareado foi utilizado para comparar a qualidade da água em diferentes pontos de coleta durante os períodos de seca e chuva na bacia hidrográfica estudada. Este teste é uma alternativa não paramétrica ao teste t pareado tradicional, adequado quando as suposições de normalidade não podem ser garantidas. Ele envolve a permutação aleatória das diferenças observadas entre os dois grupos para construir uma distribuição nula das diferenças médias, contra a qual a diferença média observada é comparada. O teste t foi realizado utilizando o pacote RVAideMemoire (Herve, 2022) do programa R (R Core Team, 2023).

RESULTADOS E DISCUSSÃO

Nos resultados foram abordados os parâmetros avaliados pelo Protocolo de Avaliação Rápida (PAR), incluindo a ocupação das margens, erosão, presença de lixo, alterações no canal do riacho, esgoto doméstico ou industrial, oleosidade da água, plantas aquáticas, animais, odor da água, presença de macroplásticos e microplásticos e proximidade com centros urbanos. Além desses também foram avaliados parâmetros físico-químicos, como turbidez, pH e condutividade elétrica. A relação entre a avaliação paisagística fornecida pelo PAR e os parâmetros físico-químicos, é de suma importância para entender a dinâmica dos impactos ambientais.

Enquanto o PAR fornece uma visão holística das condições do ambiente fluvial, os parâmetros físico-químicos oferecem dados específicos sobre a qualidade da água, permitindo uma análise mais detalhada e integrada dos fatores que influenciam a saúde dos ecossistemas aquáticos e a sustentabilidade dos recursos hídricos.

A aplicação do PAR nos pontos das microbacias inseridas no contexto urbano no município de Rio Verde (GO) revelou informações significativas sobre a poluição resultante das atividades antrópicas nas residências circundantes (Tabela 1). O PAR mostrou-se uma ferramenta eficaz para a avaliação preliminar da paisagem e infere na qualidade da água e do ecossistema de um corpo d'água, permitindo uma análise rápida e abrangente dos impactos das atividades humanas, como observado na Tabela 1 a seguir.

José Eduardo Ferreira da Silva Gadêlha – Raysa Moraes Castro – Suzana Maria Loures de Oliveira Marcionílio Karine Borges Machado – Stefany Cristiny Ferreira da Silva Gadêlha

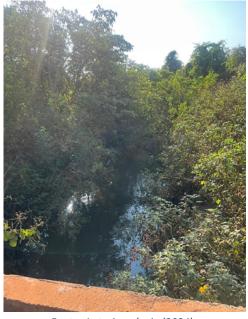
Tabela 1 – Pontuação obtida pelo Protocolo de Avaliação Rápida para cada local de amostragem, considerando os períodos de seca e chuva

Ponto de coleta	Seca	Chuva
Sapo 1	65	85
Sapo 2	110	75
Sapo 3	80	65
Sapo 4	75	60
Sapo 5	85	60
Sapo 6	90	60
Sapo 7 (Foz)	115	85
Rocha	60	70
Barrinha	95	105
Buriti	70	65
São Tomás	60	70
São Tomás de Baixo	80	65
Cilindro	80	40
Cachoeirinha	65	75

Fonte: Elaborada pelo autor (2024).

Considerando que a maior pontuação possível é 150 (caso os 15 parâmetros atendam às condições ótimas estabelecidas pelo PAR), o melhor valor para o Córrego do Sapo está no ponto 2, com 110 pontos.


Com base nos resultados da análise, observou-se uma clara variação sazonal nos parâmetros de qualidade da água ao longo dos períodos estudados. Durante a estação seca visualmente percebeu-se uma tendência de alteração nos valores dos parâmetros analisados, indicando possíveis mudanças nas características dos rios. Essas variações sazonais são frequentemente associadas a flutuações naturais no fluxo de água, na temperatura e na sua localização com o centro urbano em questão.


Ao, no entanto, aplicar o teste t pareado para comparar as medições entre os períodos seco e chuvoso, não foram encontradas diferenças estatisticamente significativas (t = -2.0156, p-valor = 0.0786). Isso sugere que, apesar das observações visuais de mudanças sazonais nas características dos rios, a evidência estatística não é suficientemente robusta para afirmar com confiança que há uma diferença significativa na qualidade da água entre os períodos analisados. Enquanto, todavia, as flutuações sazonais são evidentes visualmente, a análise estatística não suporta a conclusão de que essas variações são estatisticamente significativas.

A análise das características do leito do rio revelou a presença de sedimentos com elevados níveis de turbidez, indicando um aumento na erosão e na sedimentação decorrente do processo de urbanização. A ocupação das margens do rio exibiu uma intensa interferência humana, com uma significativa redução da vegetação ripária e a substituição por estruturas urbanas. Apesar da presença de trechos canalizados em alguns córregos, não foram observadas diferenças significativas nas alterações no canal do riacho entre os pontos de coleta nas variáveis analisadas.

José Eduardo Ferreira da Silva Gadêlha – Raysa Moraes Castro – Suzana Maria Loures de Oliveira Marcionílio Karine Borges Machado – Stefany Cristiny Ferreira da Silva Gadêlha

Fonte: Autoria própria (2024).

Já para os córregos tributários, apesar de estarem situados em um contexto urbano, a melhor nota foi para o Córrego Barrinha, tanto no período de seca quanto no período chuvoso, com 95 e 105 pontos, respectivamente. Este riacho é canalizado e possui manutenção antrópica.

Para as menores notas tem-se a pontuação de 60 em múltiplos pontos, porém a menor, de fato, é a pontuação de 45 no Córrego Cilindro, que teve condições ruins para parâmetros como erosão, alterações no canal do rio, oleosidade, não presença de animais, odor forte e muita contaminação doméstica (Figura 2).

Figura 2 – Ponto de amostragem situado no Córrego Cilindro em Rio Verde, Goiás

Fonte: Autoria própria (2024).

José Eduardo Ferreira da Silva Gadêlha – Raysa Moraes Castro – Suzana Maria Loures de Oliveira Marcionílio Karine Borges Machado – Stefany Cristiny Ferreira da Silva Gadêlha

Os resultados mostram que nos córregos tributários os valores de turbidez variam consideravelmente entre os períodos chuvoso e seco. No período chuvoso os valores de turbidez tendem a ser mais baixos, variando entre 0,54 e 101,33 NTU, atribuídos à lavagem do solo e das áreas circundantes pela chuva, reduzindo as partículas em suspensão na água. Por outro lado, no período seco os valores de turbidez são mais elevados, variando entre 37,63 e 195,33 devido ao acúmulo de sedimentos e partículas na ausência de precipitação. Esses resultados sugerem uma potencial degradação da qualidade da água durante o período seco, com implicações para a disponibilidade de água potável e o ecossistema aquático. Os valores de turbidez no período chuvoso variam entre 39,02 e 175,11 NTU, enquanto no período seco variam entre 16,67 e 181 NTU, indicando uma tendência para valores mais altos durante a estação chuvosa, possivelmente devido ao arraste de partículas do solo pelas chuvas.

As variáveis físico-químicas, apesar de se inter-relacionarem, seguem as mudanças ambientais (Esteves, 1998). Dessa forma, o aumento da precipitação e, consequentemente, da turbidez, é devido ao carreamento de sólidos das áreas adjacentes.

Os valores de pH dos córregos tributários e do Córrego do Sapo apresentam variações significativas em comparação com os resultados obtidos para o Rio Mpape (Eze *et al.,* 2018). Durante o período chuvoso os córregos tributários exibem uma faixa de pH mais ácida (5,7 a 6,3), enquanto o Córrego do Sapo mostra uma tendência mais alcalina (7,26 a 8,25). Em relação à sazonalidade, na estação seca os valores de pH tendem a ser mais altos, semelhante ao identificado por Bassey (2019). Os córregos tributários mantêm um pH levemente alcalino (7,1 a 7,8), enquanto o Córrego do Sapo apresenta uma ampla variabilidade de pH, oscilando entre 5,47 e 8,28.

Em comparação, o estudo do Rio Mpape (Eze et al., 2018) indica um pH médio de 7,36±0,16 durante a estação seca, refletindo uma água levemente alcalina, com sedimentos apresentando um pH mais ácido de 6,23±0,05. As variações observadas nos córregos tributários e no Córrego do Sapo são atribuídas a diferentes influências ambientais e fontes de poluição, resultando em uma qualidade de água menos estável do que aquela encontrada no Rio Mpape.

Essas discrepâncias sugerem que, apesar de os parâmetros físico-químicos no Rio Mpape manterem uma consistência ao longo das estações, os córregos tributários e o Córrego do Sapo podem estar sujeitos a condições ambientais e fontes de poluição diversas que influenciam significativamente seus níveis de pH, como foi verificado durante as coletas da amostragem, pois há diferentes inserções de despejo de esgoto e fontes de poluição, como descarte incorreto de lixo feito pela população, além da agricultura, que é forte na região e pode contaminar os corpos hídricos. Pequenas variações no pH podem resultar em grandes efeitos para os organismos, e a maioria deles conseguem desenvolver-se na faixa da neutralidade (6,5 a 8,5). Um pH entre 6 e 5,5 pode ocasionar a morte de organismos invertebrados aquáticos; os peixes reduzem a capacidade reprodutiva e, em valores menores, podem absorver metais tóxicos (EMB, 2008).

Durante o período chuvoso, que ocorre de novembro a abril, os córregos tributários apresentam valores de condutividade mais baixos, variando entre 54,6 μ S/cm e 413 μ S/cm, devido ao aumento do escoamento de água sobre o solo, diluindo os íons dissolvidos. Já no período seco, de maio a outubro, observa-se uma tendência de aumento nos valores de condutividade, variando entre 146,2 μ S/cm e 621 μ S/cm, em razão da evaporação mais rápida da água, concentrando os íons dissolvidos. No Córrego do Sapo os valores de condutividade durante o período chuvoso variaram entre 195,9 μ S/cm e 290 μ S/cm, enquanto no período seco variaram entre 185,9 μ S/cm e 284 μ S/cm, indicando uma tendência de aumento em relação ao período chuvoso.

José Eduardo Ferreira da Silva Gadêlha – Raysa Moraes Castro – Suzana Maria Loures de Oliveira Marcionílio Karine Borges Machado – Stefany Cristiny Ferreira da Silva Gadêlha

Os fatores ambientais que influenciam a condutividade incluem a quantidade de precipitação, a taxa de evaporação, a presença de poluentes ou nutrientes e as atividades agrícolas e industriais próximas. Esses resultados corroboram estudos anteriores, que destacaram o aumento da condutividade durante o período de seca devido à evaporação da água, resultando em uma concentração maior de íons dissolvidos (Gupta; Pandey; Hussain, 2018).

Rodrigues et al. (2012) aplicaram o Protocolo de Avaliação Rápida (PAR) de rios na bacia do Rio Gualaxo do Norte, localizada no Leste-Sudeste do Quadrilátero Ferrífero, em Minas Gerais, Brasil. O PAR foi adaptado para avaliar as condições ambientais em 31 trechos ao longo do curso do rio. Os resultados demonstraram que o PAR adaptado foi eficaz na avaliação das condições ambientais do rio em questão, o que nos mostra que, além dos parâmetros físico-químicos, que são pontuais em sua detecção, os parâmetros paisagísticos também podem ser úteis para o diagnóstico prévio de corpos hídricos.

A presença de espuma nos córregos é um indicador ambiental crucial da qualidade da água, podendo ser influenciada por fenômenos naturais ou pela introdução de poluentes, como o despejo de esgoto doméstico, que podem ter impactos adversos na vida aquática e no ecossistema aquático como um todo. A avaliação da distribuição de espuma, portanto, é essencial para compreender os efeitos nos diferentes períodos sazonais. Notavelmente, no Córrego Rocha, situado próximo à foz, observa-se uma presença significativa de espuma tanto no período seco quanto no chuvoso, em quantidades superiores às encontradas em outros córregos estudados.

A presença de espuma foi observada em grande parte dos córregos da bacia estudada, indicando uma condição preocupante em relação à qualidade da água. Esta ocorrência generalizada de espuma pode ser atribuída, em grande parte, ao despejo incorreto de esgoto doméstico na região. O lançamento inadequado de resíduos domésticos contribui para a carga de poluentes nos cursos d'água, levando à formação de espuma como resultado da decomposição de matéria orgânica e da presença de tensoativos, que são comumente encontrados em detergentes e produtos de limpeza (Figura 3).

Figura 3 – Córrego Rocha no período chuvoso e seco respectivamente em Rio Verde, Goiás

Fonte: Autoria própria (2024).

José Eduardo Ferreira da Silva Gadêlha – Raysa Moraes Castro – Suzana Maria Loures de Oliveira Marcionílio Karine Borges Machado – Stefany Cristiny Ferreira da Silva Gadêlha

Durante o período chuvoso cerca de 57,14% dos pontos de amostragem registraram a presença de odor forte, enquanto no período seco aproximadamente 42,86% dos pontos apresentaram essa característica. Embora tenha sido observada uma diminuição na ocorrência de odor forte durante a estação seca em comparação com o período chuvoso, a persistência desse odor, mesmo em condições de estiagem, sugere a hipótese de uma contínua poluição no córrego. Esta presença constante de odor forte pode ser associada ao despejo inadequado de esgoto doméstico, que pode liberar substâncias químicas e compostos orgânicos voláteis na água, contribuindo para a deterioração da qualidade da água e a ocorrência de odores desagradáveis.

O lançamento de despejos pontuais é praticamente constante ao longo do ano, mas a capacidade de suporte do manancial às cargas poluidoras varia com a sua vazão, a qual é dependente das condições sazonais de temperatura e precipitação, que se relacionam aos fenômenos de mistura das águas, evaporação e escoamento superficial (Freire, 2020).

Os resultados revelam que, durante o período chuvoso, cerca de 71,43% dos pontos de amostragem apresentaram lixo acumulado nas margens do rio, enquanto durante a estação seca aproximadamente 85,71% dos pontos mostraram a presença de resíduos. A prática inadequada de descarte de lixo urbano nas proximidades dos córregos é uma questão preocupante que acarreta sérios impactos ambientais e contribui para a degradação da qualidade da água (Vinçon-Leite *et al.*, 2021). A acumulação de lixo ao longo das margens pode introduzir uma variedade de poluentes na água, incluindo substâncias químicas tóxicas presentes em plásticos e resíduos de alimentos em decomposição. O lixo pode servir como substrato para o crescimento de microorganismos patogênicos, aumentando o risco de contaminação bacteriana da água. O acúmulo de lixo pode indicar poluição e contaminação, além de afetar negativamente a estética do ambiente. Resíduos sólidos podem conter substâncias tóxicas e servir de criadouro para vetores de doenças, prejudicando a qualidade da água e colocando em risco a saúde das pessoas e da vida aquática (Clark; Pitt, 2022).

Outra característica importante é a verificação de alterações no canal do riacho, como retificações, desvios ou assoreamentos. Essas mudanças podem ser causadas por atividades humanas, como urbanização, agricultura e mineração, e têm o potencial de afetar o fluxo da água, a biodiversidade e a capacidade de autodepuração do local. Alterações no canal também podem contribuir para o aumento da erosão e da sedimentação, comprometendo ainda mais a qualidade da água e o *habitat* aquático.

A atividade pecuária ao redor do rio, o despejo de resíduo sólidos, a descarga industrial e a baixa vazão, são outros fatores que contribuem para a deterioração da qualidade e devem ser analisados (Sharifinia; Adeli; Nafarzadegan, 2017; Dutta; Dwivedi; Kumar, 2018).

O protocolo inclui a avaliação da presença de esgotos domésticos ou industriais na água. O lançamento desses esgotos sem tratamento adequado pode introduzir poluentes orgânicos e inorgânicos na água, como nutrientes, metais pesados e substâncias químicas tóxicas; esses poluentes podem causar contaminação bacteriana, eutrofização, toxicidade e outros impactos adversos à saúde humana e ao meio ambiente (Duan; Tan, 2018).

Foi observada contaminação por oleosidade em dois córregos tributários que estão situados próximos a lojas de tinturaria automotiva. A oleosidade na água é uma característi-

José Eduardo Ferreira da Silva Gadêlha – Raysa Moraes Castro – Suzana Maria Loures de Oliveira Marcionílio Karine Borges Machado – Stefany Cristiny Ferreira da Silva Gadêlha

ca relevante a ser considerada, indicando a presença de óleos, graxas e outros compostos lipofílicos na superfície da água. Essa presença pode ser atribuída a vazamentos de óleo de origem veicular, industrial ou doméstica, além de descargas de resíduos de atividades agrícolas ou de mineração.

A presença de óleos e graxas pode reduzir a quantidade de oxigênio dissolvido na água, comprometendo a respiração dos organismos aquáticos e levando a condições de hipóxia. A formação de uma camada de óleo na superfície da água pode bloquear a entrada de luz solar, dificultando a fotossíntese das plantas aquáticas e afetando a cadeia alimentar aquática. Em última análise, a contaminação por oleosidade representa uma ameaça significativa à saúde dos ecossistemas aquáticos e à qualidade da água, exigindo a criação de medidas adequadas de prevenção e remediação para minimizar seus impactos.

A contaminação por macroplásticos foi generalizada em todos os pontos de amostragem, evidenciando uma alta pressão antropogênica e um sistema inadequado de gestão de resíduos sólidos na área urbana estudada. Ademais, a poluição em torno do corpo hídrico por descarte incorreto de itens plásticos foi mais pronunciada em áreas próximas a centros urbanos e residências, refletindo o impacto direto das atividades humanas na degradação ambiental dos córregos. Esses resultados destacam a urgência de medidas de conservação e manejo adequadas dos recursos hídricos em áreas urbanas, visando à proteção e restauração dos ecossistemas aquáticos para garantir a sustentabilidade ambiental a longo prazo.

Já a presença de macroplásticos na água ou nas margens aponta para a poluição por plásticos, que pode ter impactos negativos na vida aquática e no meio ambiente. A presença de macroplásticos na água representa uma ameaça à vida aquática, pois os animais podem ingeri-los ou ficarem presos neles, além disso, os plásticos podem liberar substâncias químicas tóxicas na água à medida que se degradam, afetando a qualidade da água e a saúde dos ecossistemas aquáticos (United States Environmental Protection Agency, 2020).

A presença de microplásticos na água serve como um indicador crucial para identificar a existência de pequenos fragmentos de plástico no ambiente aquático. Esses microplásticos podem ter origens diversas, incluindo a quebra de objetos plásticos maiores, abrasão de produtos de plástico ou mesmo o descarte incorreto de resíduos plásticos diretamente nos corpos d'água. A detecção desses microplásticos na água é significativa, pois pode indicar contaminação por poluentes persistentes que representam riscos tanto para a saúde humana quanto para o meio ambiente (Clark; Pitt, 2022).

A característica relacionada à poluição em torno do corpo hídrico por descarte inadequado de itens plásticos aponta para a presença de resíduos plásticos nas proximidades do corpo d'água. Tal observação sugere práticas inadequadas de disposição de resíduos na região, como foi observado neste estudo.

O descarte inadequado de itens plásticos contribui substancialmente para a poluição da água, posto que esses materiais podem se decompor lentamente, liberando substâncias tóxicas na água e causando danos significativos à vida aquática. Adicionalmente, o acúmulo de resíduos plásticos pode ocasionar obstruções no fluxo da água e prejudicar o habitat natural dos organismos aquáticos.

A proximidade do corpo d'água com áreas urbanas ou residenciais constitui outra característica relevante a ser considerada. Corpos d'água localizados em proximidade com centros urbanos

José Eduardo Ferreira da Silva Gadêlha – Raysa Moraes Castro – Suzana Maria Loures de Oliveira Marcionílio Karine Borges Machado – Stefany Cristiny Ferreira da Silva Gadêlha

estão mais suscetíveis à poluição devido ao lançamento de esgotos domésticos, ao descarte inadequado de resíduos sólidos e à presença de produtos químicos provenientes de atividades industriais e comerciais. Essa proximidade aumenta o risco de contaminação da água por poluentes orgânicos e inorgânicos, comprometendo sua qualidade e tornando-a potencialmente inadequada para consumo humano, atividades recreativas ou suporte à vida aquática (Voudrias; Allan, 2018).

Os resultados sugerem que a qualidade da água pode ser comprometida durante o período seco, com implicações para a disponibilidade de água potável e a saúde do ecossistema aquático. A variabilidade observada no Córrego do Sapo pode indicar fontes específicas de poluição ou outras influências locais que precisam ser investigadas mais a fundo.

A adaptação do PAR para incluir a avaliação de macro e microplásticos mostrou-se fundamental para uma análise mais abrangente e contemporânea da poluição dos corpos hídricos. Macroplásticos, como sacos plásticos, garrafas e outros detritos visíveis, e microplásticos, pequenos fragmentos que resultam da degradação de plásticos maiores, representam uma ameaça significativa ao meio ambiente aquático. Enquanto os macroplásticos podem causar obstruções físicas e serem ingeridos por animais maiores, os microplásticos têm a capacidade de penetrar em níveis tróficos mais baixos, sendo ingeridos por organismos menores e, eventualmente, acumulando-se na cadeia alimentar.

Os achados corroboram a relevância dos aspectos apresentados na fundamentação teórica, especialmente no que se refere à influência das atividades antrópicas e das características ambientais, como descrito por Campos e Nucci (2021), na degradação dos corpos hídricos.

A presença desses poluentes não apenas deteriora a qualidade da água, mas também afeta a biodiversidade e a saúde dos ecossistemas aquáticos. Assim, a inclusão desses parâmetros no PAR é essencial para identificar e quantificar a extensão da poluição plástica, proporcionando dados críticos para a formulação de estratégias de mitigação e políticas públicas voltadas para a gestão sustentável dos recursos hídricos.

CONCLUSÃO

Conclui-se, por meio deste estudo, que a análise dos parâmetros físico-químicos e do Protocolo de Avaliação Rápida (PAR) revelou variações significativas. Os valores de condutividade aumentaram nos córregos tributários durante o período seco devido à evaporação e à consequente concentração de íons dissolvidos. O pH dos córregos tributários mostrou-se mais ácido no período chuvoso e mais alcalino no seco, enquanto o Córrego do Sapo apresentou ampla variabilidade de pH no período seco, indicando influências diversas. A turbidez foi mais alta nos córregos tributários durante a estação seca em razão do acúmulo de sedimentos, e no Córrego do Sapo a turbidez permaneceu elevada em ambos os períodos, com tendência a aumentar na época chuvosa.

O PAR indicou uma maior presença de macro e microplásticos, especialmente em áreas próximas a centros urbanos, refletindo uma alta pressão antropogênica e sistemas inadequados de gestão de resíduos sólidos. A presença de espuma e lixo acumulado nas margens dos rios durante ambos os períodos, mas com maior incidência na época seca, aponta para a constante poluição por esgoto doméstico e resíduos sólidos, e a contaminação por oleosidade, especialmente em córregos próximos a atividades automotivas, destaca a influência de poluentes específicos.

José Eduardo Ferreira da Silva Gadêlha — Raysa Moraes Castro — Suzana Maria Loures de Oliveira Marcionílio Karine Borges Machado — Stefany Cristiny Ferreira da Silva Gadêlha

Esses resultados indicam uma potencial degradação da qualidade da água influenciada pela sazonalidade, com implicações significativas para a disponibilidade de água potável e a saúde do ecossistema aquático. Destaca-se, portanto, a necessidade de criação de políticas públicas locais voltadas para o monitoramento contínuo das bacias hidrográficas em Rio Verde e região, com o objetivo de reduzir os impactos ambientais e proteger a saúde pública. Programas de gestão adaptativa e ações educativas junto a população local são essenciais para minimizar os impactos negativos do descarte inadequado de resíduos e da ocupação desordenada das margens dos córregos.

O acompanhamento assíduo das condições das bacias hidrográficas, aliado à regulamentação e fiscalização efetivas, pode fornecer uma base sólida para a formulação de estratégias que promovam a sustentabilidade ambiental e garantam a qualidade hídrica para as gerações futuras. Recomenda-se a inclusão de mais parâmetros e um maior número de pontos de coleta em pesquisas futuras para fortalecer a robustez dos resultados e aprofundar a compreensão das dinâmicas sazonais na bacia hidrográfica estudada.

REFERÊNCIAS

ALVES, S. et al. Análise morfométrica da Bacia do Ribeirão das Abóboras – Rio Verde (GO). *Geociências*, v. 35, n. 4, p. 652-667, 2016.

BASSEY, S. A. "Anthropoholism" as an Authentic Tool For Environmental Management. *International Journal of Environmental Pollution and Environmental Modelling*, v. 2, n. 3, p. 160-168, 2019.

CAMPOS, J. C.; NUCCI, J. C. Protocolo de Avaliação Rápida de Rios Urbanos (PARU) como ferramenta de monitoramento ambiental. *GOT: Revista de Geografia e Ordenamento do Território*, v. 21, p. 121, 2021.

CLARK, R. B.; PITT, R. Water pollution control. Malden, Massachusetts, EUA: John Wiley & Sons, 2022.

DUAN, Q.; TAN, Z. Advances in water quality monitoring and assessment. São Paulo: Springer. 2018.

DUTTA, Smita; DWIVEDI, Ajay; KUMAR, M. Suresh. Use of water quality index and multivariate statistical techniques for the assessment of spatial variations in water quality of a small river. *Environmental Monitoring and Assessment*, [S. I.], v. 190, n. 12, p. 1-17, 13 nov. 2018.

EZE, O. et al. Spatial and Temporal Variations in Physicochemical Properties of an Aquatic Environment, Chemical Science International Journal, v. 23, n. 1, p. 1-8, 2018.

EMB. Environmental Management Bureau. Water quality monitoring manual. Department of environment and natural resources. [S. I.]: [s. n.], 2008. 231 p.

ESTEVES, F. de A. Fundamentos de limnologia. 2. ed. Rio de Janeiro: Interciência, 1998.

FELIX, R. R. de O. M.; ALVES, V.; LIMA, J. P. Gestão do uso do solo no entorno do Rio Sapucaí em Itajubá (MG). *Urbe. Revista Brasileira de Gestão Urbana*, v. 11, p. 1-15, 2019. DOI: https://doi.org/10.1590/2175-3369.011.001

FREIRE, L. L. Variação sazonal e interanual da qualidade das águas de rios do semiárido brasileiro. 2020. 160 f. Dissertação (Mestrado em Engenharia Civil) — Programa de Pós-Graduação em Engenharia Civil, Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2020.

GUPTA, Nidhi; PANDEY, Pankaj; HUSSAIN, Jakir. Effect of physicochemical and biological parameters on the quality of river water of Narmada, Madhya Pradesh, India. *Water Science*, v. 31, n. 1, p. 11–23, 2017. Disponível em: https://www.sciencedirect.com/science/article/pii/S1110492916300182

HERVE, M. RVAideMemoire: Testing and Plotting Procedures for Biostatistics. R package version 0.9-81-2, 2022. Disponível em: https://CRAN.R-project.org/package=RVAideMemoire

IBGE. Instituto Brasileiro de Geografia e Estatística. Rio Verde (GO) – *Cidades@*. 2019. Disponível em: https://cidades.ibge.gov.br/brasil/go/rio-verde.html.

R CORE TEAM. *R:* A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria, 2023. Disponível em: URL https://www.R-project.org/

RODRIGUES, Aline Sueli de Lima; MALAFAIA, Guilherme; CASTRO, Paulo de Tarso Amorim. Protocolos de avaliação rápida de rios e a inserção da sociedade no monitoramento dos recursos hídricos. *Revista Ambiente & Água*, v. 3, n. 3, 2008.

José Eduardo Ferreira da Silva Gadêlha – Raysa Moraes Castro – Suzana Maria Loures de Oliveira Marcionílio Karine Borges Machado – Stefany Cristiny Ferreira da Silva Gadêlha

RODRIGUES, Aline Sueli de Lima; CASTRO, Paulo de Tarso Amorim; MALAFAIA, Guilherme. Utilização dos protocolos de avaliação rápida de rios como instrumentos complementares na gestão de bacias hidrográficas envolvendo aspectos da geomorfologia fluvial: uma breve discussão. *Enciclopédia Biosfera*, v. 6, p. 1-9, 2010. Disponível em: http://www.conhecer.org.br/enciclop/2010c/utilizacao%20dos%20protocolos. pdf. Acesso em: 7 out. 2014.

RODRIGUES, A. S. L. *et al.* Adequação e avaliação da aplicabilidade de um Protocolo de Avaliação Rápida na bacia do Rio Gualaxo do Norte, Leste-Sudeste do Quadrilátero Ferrífero, MG, Brasil. *Revista Ambiente* & Água, v. 7, p. 231-244, 2012.

ROSA, C. et al. Aplicação de índices para avaliação da qualidade da água da Bacia Costeira do Sapucaia em Sergipe, Engenharia Sanitária e Ambiental, v. 23, n. 1, p. 33-46, 2017.

SANTOS, G. O. et al. Monitoramento da água em bacia hidrográfica com diferentes usos do solo no município de Rio Verde (GO). Revista em Agronegócio e Meio Ambiente, Maringá, PR, v. 12, n. 1, p. 249-271, 2019.

SHARIFINIA, Moslem; ADELI, Behzad; NAFARZADEGAN, Ali Reza. Evaluation of water quality trends in the Maroon River Basin, Iran, from 1990 to 2010 by WQI and multivariate analyses. *Environmental Earth Sciences*, v. 76, n. 22, p. 1-13, nov. 2017.

SMITH, Mark D.; SIKKA, A.; TINASHE, Lindel Dirwai. Research and innovation in agricultural water management for a water-secure world. *Irrigation and Drainage*, 2023. DOI: https://doi.org/10.1002/ird.2872

TEGU, T. B.; EKEMUBE, R. A.; EBENEZER, S. O.; ATTA, A. T. Monitoring the Variability of the Pollutant Level in Urban Water Front during Dry and Wet Seasons. *European Journal of Applied Sciences*, v. 11, n. 1, p. 60–69, 2023. DOI: 10.14738/aivp.111.13747. Disponível em: https://www.journals.scholarpublishing.org/index.php/AIVP/article/view/13747

UNEP. United Nations Environment Programme. Global environment outlook 6: healthy planet, healthy people. Nairóbi, Quênia: Unop, 2018.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. *Drinking Water Regulations and Contaminants* – Standards and Regulations. Washington, D.C.: USEPA, 2020. Disponível em: https://www.epa.gov/sdwa/drinking-water-regulations-and-contaminants.

VINÇON-LEITE, B.; SILVA, T. F. G.; GIANI, A.; FIGUEREDO, C. C.; PETRUCCI, G. Dinâmica temporal da qualidade da água em um córrego urbano tropical. *Engenharia Sanitária e Ambiental*, v. 26, n. 6, p. 1141–1152, 2021. Disponível em: https://www.scielo.br/j/esa/a/WyWFSqzqGPynyh8fMQshkkP/

VOUDRIAS, E.; ALLAN, R. Water pollution: sources, remediation and health. Boca Raton, Flórida: CRC Press, 2018.

ZAMBONI, Michelli. Avaliação do sistema fluvial urbano de Chapecó/SC através do Protocolo de Avaliação Rápida de Rios Urbanos (PARU). 2024. Dissertação (Mestrado) — Universidade Federal da Fronteira Sul, Chapecó, Erechim, 2014.

ZAMBONI, M. Aplicação do protocolo de avaliação rápida de rios como subsídio para análise da influência da urbanização no Lajeado Passo dos Índios, Chapecó/SC. 2019. 61 f. Monografia (Licenciatura em Geografia) — Universidade Federal da Fronteira Sul, Chapecó, 2019. Orientador: Andrey Luis Binda.

Autor Correspondente

José Eduardo Ferreira da Silva Gadêlha Instituto Federal Goiano Programa de Pós-Graduação *Stricto Sensu* em Agroquímica Rodovia Sul Goiana, km 01, Rio Verde/GO, CEP 75901-970, Brasil joseduardogadelha@gmail.com

> Este é um artigo de acesso aberto distribuído sob os termos da licença Creative Commons.

